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BOUNDARY LAYER IN THERMAL RADIATION ABSORBING 

AND EMITTING MEDIA? 

R. VISKANTA: and R. J. GROSHS: 

(Received 16 March 1962) 

Abstract-A boundary-layer problem concerned with the effects of thermal radiation on the tempera- 
ture distribution and the heat transfer in an absorbing and emitting media flowing over wedge is 
considered. The general boundary-layer problem is formulated in terms of an equation of transfer for 
thermal radiation, a nonlinear integrodifferential equation which represents conservation of energy, 
and the usual equations for conservation of mass and momentum. Because no general solution for these 
equations is possible, the Rosseland approximation for the radiant heat flux vector is used to simplfy 
the energy equation. Numerical solutions for temperature distribution and heat transfer are given. 
Calculations are presented for a fluid whose Prandtl number is 1, as well as for molten Pyrex glass. 

c, velocity of light ; 
CP, specific heat at constant pressure; 
Ebb, black-body emissive power, 

Ebb = TI,,b = aT4; 

E, radiant energy flux vector defined by 
equation (5); 

$3 incident radiation defined by equation 
(4) ; 

c 
J, dimensionless stream function defined by 

equation (17); 
k enthalpy ; 

I, intensity of radiation or the amount of 
radiant energy in a pencil of rays per 
unit time, solid angle, and the area per- 
pendicular to the ray; 

Ibb, Planck’s function of black-body radia- 
tion; 

k, thermal conductivity; 
k eff, effective thermal conductivity defined by 

equation (13) ; 

2% 

exponent in equation (15); 
Prandtl number ; 

N, dimensionless parameter, 
N = K/4n2uT*3; 
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index of refraction; 
pressure ; 
position vector; 
position co-ordinate in the direction of 
unit vector Q2; 
absolute temperature; 
time; 
velocity outside the boundary layer; 
radiant-energy density defined by equa- 
tion (4); 
velocity in the x-direction; 
constant defined by equation (17); 
velocity in the y-direction; 
position co-ordinate; 
pressure gradient parametered, 

/3=2m/(m+ 1); 
extinction coefficient or sum of absorp- 
tion and scattering coefficients; 
similarity variable defined by equation 
(16); 
dimensionless (normalized) temperature. 

6’ = TIT*; 
absorption coefficient; 
wavelength; 
dynamic viscosity; 
kinematic viscosity; 
density; 
Stefan-Boltzmann constant; 
disspation function; 
stream function defined by equation 
(17); 
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Q, solid angle ; 
S2, unit vector; 
V, vector operator used for, say, the 

gradient of a scalar. 

Subscripts 
0, free stream; 
W, wall ; 
A monochromatic (a given wavelength or 

per unit wavelength). 

Superscripts 
* property evaluated at an arbitrary 

temperature T* ; 
denotes differentiation with respect to the 
similarity variable 7. 

INTRODUCTION 

TWO-DIMENSIONAL laminar boundary layer-flow 
and convective heat transfer have been studied 
by many investigators; not much attention has 
been given, however, to cases where thermal 
radiation becomes an additional factor. Recent 
developments in hypersonic flight, missile re- 
entry, rocket combustion chambers, power 
plants for interplanetary flight and gas-cooled 
nuclear reactors have focused attention on ther- 
mal radiation as a mode of energy transfer, and 
emphasized the need for an improved under- 
standing of radiative transfer in these processes. 

Problems where convection and radiation are 
coupled have been receiving more attention 
[l-7]. In these studies, simplifying assumptions 
and approximations were introduced to obtain 
the solution of the conservation equations or of 
only the energy equation, and only Howe [4] and 
Kadanoff [7] presented numerical results. In his 
analysis, Howe assumed that the opaque gas 
only absorbs, but does not emit any thermal 
radiation. Kadanoff used the integrated (over-all 
solid angles) form of the equation of transfer, 
otherwise known as the Mime-Eddington 
approximation. Ruminskii [5] employed a similar 
equation to express the conservation of radiant 
energy. The Milne-Eddington approximation, 
known as the first-order diffusion approximation, 
was developed to deal with the problems in 
astrophysics and neutron transport [8]. 

These studies have shown that thermal 
radiation affects heat transfer both directly and 

indirectly. Radiant energy can be directly 
absorbed or emitted by a surface and thereby 
alter its heat-transfer characteristics. Indirectly, 
thermal radiation can be partially absorbed in 
the boundary layer, altering the temperature 
distribution, and thereby influencing the con- 
ductive and convective heat-transfer charac- 
teristics. 

The purpose of this paper is to study the 
effects of thermal radiation on the temperature 
distribution and heat transfer during flow of an 
absorbing and emitting medium along a wedge 
so that a better understanding of combined 
radiation and convection might be possible. 
Since the complexity introduced by radiative 
contribution to the energy flux is in part due to 
the dependence of the flux on the geometrical 
configuration of the problem, the simple 
geometry of a wedge was chosen. 

When energy transfer by radiation and 
convection is present, the law of conservation of 
energy becomes a complicated nonlinear integro- 
differential equation. Thus, an exact analysis of 
the interaction of a radiation field with ab- 
sorbing and emitting media in the laminar 
boundary layer is a very difficult problem. For 
this reason, the Rosseland approximation, 
which is valid for intense absorption, is used 
below to approximate the radiant-energy flux 
vector. 

The strongly absorbing medium is of interest 
as it provides a physically significant standard 
of comparison for understanding the general 
case, and the authors are of the opinion that the 
simple problem must be solved first before the 
more difficult problem can be attempted. 

BASIC CONSERVATION EQUATIONS 

The first step in the analysis of a combined 
convection and radiation heat-transfer problem 
is the application of conservation laws of mass, 
momentum and energy. In nonrelativistic terms, 
the presence of radiation does not affect the 
equations of mass and momentum, since radia- 
tion has no mass and the “radiative viscosity” is 
very small at ordinary temperatures. The classical 
forms of these equations are well known and 
therefore are not considered here. Attention is 
focused below on the equation of transfer, or the 
equation of monochromatic radiant-energy con- 
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servation, and on the equation of energy intensity will decrease on account of absorption 
including the terms due to thermal radiation. (scattering is neglected) and increase because of 

contributions from the emission in the volume 

Equation of transfer 
Before the equation for conservation of 

energy, which customarily accounts for con- 
duction, convection and diffusion and usually 
omits radiation as a mode of energy transfer, 
can be derived, the equation of transfer of 
thermal radiation in a radiating medium must 
be considered. 

The equation of transfer can be derived by 
considering a small cylindrical element, Fig. 1, 

element. Counting up the gains and losses of 
radiant energy in the pencil of rays dJ2 during its 
traversal of distance ds, one can show [9] 

= KA[ni~bb,A(r, 0 - ZAl,(r, Q2, 91, (1) 
where Ibb,A is Plank’s function. The first and 
second terms on the left-hand side of this 
equation give the change in monochromatic 

FIG. 1. Co-ordinates for equation of transfer. 

of cross-section dA and length ds in an absorbing 
and emitting medium in which temperature 
varies from point to point in space and time. 
Radiant energy in the wavelength interval 
between h and h + dX and confined to a pencil 
of rays of solid angle dSZ about the direction of 
the unit vector S2 will cross the two faces normally 
in a time interval dt. As measured by the mono- 
chromatic intensity of radiation, IA@, S2, t), the 

intensity with time and position, respectively. 
The first and second terms on the right-hand 
side denote emission and absorption of the 
radiant energy. 

The formal solution of equation (1) is readily 
written down. By considering a pencil of rays 
in the direction 51, the directional derivative 
becomes V x @I,) = dI,Jds, and the steady-state 
solution of equation (1) becdmes 
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M-4 = W) exp (-- .j”S KA W 

where I,(O) is the monochromatic intensity of 
radiation in the direction s-2 leaving the surface 
at s = 0. It should be noted that equation (2) 
does not in any real sense solve the equation of 
transfer because the temperature distribution 
(1,,,,) must still be specified to determine the 
intensity of radiation. 

Integrating equation (1) over all solid angles 
(L? = 4n), there is obtained [9] 

a&, t) 
---n- ---- = 

ct 
- v x I?$&, t) 

-i- ~A[4fi&b,h(r, t) - g,& t)l, (3) 

where the radiant-energy density uA(r, t) is 
de~ned as 

z.i,&, t) = &Jr, t)/c = l/cJ,.,,, I&, S2, t)dQ (4) 

and the monochromatic radiant-energy transfer 
per unit cross-sectional area perpendicular to a 
unit vector Q is defined as 

I&@, t) = .L=& 1,Cr, Sz, r&Q dQ. (5) 

Equation (3) describes the local rate of change 
of monochromatic radiant energy density. 

The equation for conservation of total? 
radiant energy is obtained, of course, by 
integrating equation (3) over all wavelengths 
from 0 to cg. This introduces additional diffi- 
culties because of the double integrals involved. 
Considerable simplification is obtained, however, 
for the case in which the monochromatic 
absorption coefficient is independent of wave- 
length or nearly so, in that K,, can be replaced 
by an appropriate mean absorption coefficient 
K. The index of refraction is ordinarily quite 
uniform over a range of wavelengths. 

There is lack of agreement [8] on the most 
appropriate definition for the mean absorption 
coefficient. However, Plan&s de~nition 

K = .l$ ‘Q~~I~,A dA/.l? Itrb,A dh (6) 

seems to be the most meaningful when energy 
transport by conduction and convection are 

1 For the total or grey quantities the subscript h is 
omitted. 

present and therefore is used in this paper. Very 
little data are available on the dependence of 
the radiative properties on wavelength, tempera- 
ture and pressure; they have been investigated 
only in certain wavelength regions and only for 
low pressures and temperatures. Since so little 
information is available, numerical calculations 
which follow will treat the absorption coefficient 
as being independent of position and wavelength. 

Energy equation 
With energy transfer by conduction, con- 

vection and radiation and work, the equation 
for conservation of energy can be written as [9] 

The first term on the Ieft-hand side and the term 
0 ’ E on the right-hand side represent the net 
rate of gain of energy per unit of volume due to 
thermal radiation. These two terms are ordinarily 
neglected in standard WOI ks on convective heat 
transfer. 

Integrating equation (3) over all wavelengths 
and substituting in equation (7), there is obtained 

Note that the term K{4n2Esb - 6) appears with 
opposite signs in equations (3) and (8) indicating 
that a net gain of radiant energy occurs at the 
expense of molecular energy. When radiation 
terms are included in the energy equation the 
temperature is a more natural dependent variable 
than the enthalpy; hence the term contairling 
enthalpy will usually be rewritten. 

Since the radiant-ener~ flux vector E and the 
incident radiation d are both functions of 
temperature and the boundary conditions im- 
posed on the intensity I@, S2, t), equations (7) 
and (8) are nonlinear integrodifferential equa- 
tions. Unfortunately, in view of the existing 
known mathematical techniques available for the 
solution of integrodifferential equations, an 
exact solution of even a simplified energy 
equation does not seem possible. 
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Rosseland approximation 
The grey-medium assumption (K~ = const.) 

reduced the complexity of the radiant-energy 
terms; however, the resulting energy equation is 
still rather formidable and further simplification 
is required. In the section below, an approxima- 
tion for the radiant-flux vector is used; the 
assumptions made in deriving it are discussed in 
this section. 

Rosseland [IO] has shown that, for intense 
absorption and a system close to thermo- 
dynamic equilibrium, the radialit-energy-flux 
vector can be approximated by 

This relation also follows from the analog of 
simple kinetic-theory arguments. Photons travel 
with the velocity c. At any time, 4 of the photons 
are moving in the x-direction and 4 in the 
opposite direction. These photons execute a 
random walk through the absorption centers. 
If the definition of the Rosseland mean free path 
is used, the radiant energy flux is given by 
equation (9). Relation (9) can also be derived by 
expanding the equation for radiant flux in Taylor 
series [2, 1 I]. 

The Rosseland approximation leads to a 
considerable simplification in the expression for 
radiant flux. The integral representation is now 
replaced by a simple diffusion-type equation. 
The simplicity is, however, offset by its approxi- 
mate nature and other disadvantages: 

(I) The approximation is valid at points far 
(optically) from the bonding surface and only 
for intense absorption, i.e. when the fractional 
variation in temperature is small in a distance of 
one mean free path. The approximation breaks 
down in the vicinity of the surface, since it does 
not take into account radiation leaving from the 
surface; the presence of the surface changes the 
coefIicient from 16/3 to 813. 

(2) Equation (9) represents only the sum of 
the first two terms in the Taylor series expansion 
of the black-body emissive power Ebb, and 
therefore in some physical problems the error 
in truncating the series could be appreciable. 

In spite of these shortcomings the Rosseland 

approximation has been used with success in a 
variety of problems ranging from transport of 
radiation through gases at low density to the 
study of the effects of radiation on blast waves 
caused by nuclear explosions. An extensive 
bibliography regarding Rosseland’s approxima- 
tion can be found in [9]. 

Boundary-layer equations 
It is conceivable that under certain conditions 

radiation would cause an extremely thick 
thermal boundary layer. This raises the question 
whether or not boundary-layer approximations 
are valid when energy transport by radiation is 
significant. In the following analysis it is assumed 
that the boundary-layer-type energy equation is 
valid. 

The co-ordinate system for the wedge is shown 
in Fig. 2. Making the usual Prandtl boundary 

FIG. 2. Co-ordinate system for flow past a wedge. 

layer assumptions [12] and utilizing the Rosse- 
land approximation, the equations of conserva- 
tion for steady state take the following form: 

Conservation of mass: 

;i (pu) + 2; (PC) = 0. (10) 

Conservation of momentum: 
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Conservation of energy: Thus the velocity components become 

3T 
pc,u x + pc,v 

and 

(18) 

P* Cm + l)v,u,x 

; 
F 

) m-1 

2 1 111 - 1 
na+l 1 ?f%) 1 * (1% 

where 
1 6n2CrT3 

ke,ff = k + k, = k + -- 
3K (131 

is the effective thermal conductivity. The term 
16dbT3/3~ can be considered as the “radiative 
conductivity”. 

The boundary conditions for this system of 
equations are assumed to be 

u = v =0, T = T, at y = 0 
u = u, T=TO at Y3 co. (14) 

Similarity transformation 
“Similar” solutions are discussed in [12]. 

They constitute a particularly simple class of 
solutions of u(x, Y) and cause the system of 
partial di~erential equations (10-12) to reduce 
to two ordinary differential equations. 

It is proved in [12] that such similar solutions 
exist when the velocity of the potential flow is 
proportional to a power series of the length 
co-ordinate measured from the stagnation point, 
i.e. for 

u = u,x”. 05) 

To obtain the similar solution, the dimension- 
less co-ordinate 7, first suggested by Faulkner 
and Skan [12], is introduced: 

rl =Y ~~~1”. (16) 

The asterisk designates a physical property 
evaluated at an arbitrary temperature T*. The 
continuity equation (10) can then be integrated 
by introducing the stream function as 

The velocities in the conservation equations can 
be replaced through the definitions 

a+ P w -=- 
aY P* 

uand- = - -If_,. 
3X P* 

In the case that p, p and keff are functions of 
temperature, the energy equation is nonlinear 
in temperature and the most convenient defini- 
tion of dimensionless temperature B is 0 = T/T*. 
lt is also possible to show that 0 can be expressed 
as a function of 71 alone for the boundary 
conditions in this problem. 

Using the Bernoulli equation to evaluate the 
pressure gradient and introducing the similarity 
variable 7, the stream function II, and the 
dimensionless temperature 8, the conservation 
equations (11) and (12) become 

i_al (~)-(%)fl2] =o (20) 

and 

[(k&)0’]’ + N&e’ = 0, w 

where the prime denotes differentiation with 
respect to q_ In problems where energy transport 
by thermal radiation is appreciable in com- 
parison to energy transport by conduction and 
convection, temperature levels will be high and 
the work of the pressure forces and viscous heat 
dissipation is unimportant and has therefore 
been neglected. The ratio k&k is expressed as 

k&k = 1 + 4~3/3~. (22) 

The dimensionless parameter hJ determines the 
relative role of conduction versus radiation 
term. It was discussed in a previous section that 
in the immediate vicinity of the wall the co- 
effcient in equation (9) changes from 1613 to 813. 
Therefore in the numerical calculations a 
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constant of 213, instead of 413, was used in 
equation (22) for values of 7 smaller than 4 per 
cent ot the thermal-boundary-layer thickness. 

The boundary conditions for this system of 
differential equations are obtained from equa- 
tions (14), (16) and (17) as 

f=f'=O, B=f3,at7j=O 

f’=l, 8=0,at~-+co. 1 
(23) 

DISCUSSION OF RESULTS 

Numerical integrations of equations (21) and 
(22) are reported for two distinct cases. In the 
first calculation, the effect of the parameter N is 
considered when the physical properties are 
assumed to be independent of temperature. 
Temperature distributions for a Prandtl number 
of 1 were calculated for both hot and cool walls. 
Since the energy equation is nonlinear and no 
suitable dimensionless temperature was found 
that would have eliminated the specification of 
particular values of Bw and B0 in the boundary 
conditions (23), solutions have been obtained 
for several values of Bw and 0,. 

In the second calculation, consideration was 
given to Pyrex glass, for which the viscosity is a 
very strong function of temperature. Both the 
velocity and temperature profiles are therefore 
affected by this dependence. Molten Pyrex glass 
was chosen because of interest in re-entry 
problem and because it is possible to change the 
absorption coefficient of the glass by addition 
of a carbonizing plastic [13]. The values of 

FIG. 3(a). Temperature profiles as functions of the 
similarity variable 

FIG. 3(b). Temperature profiles as functions of the 
1) for Np, = 1.0, p = 0, 0,,, = 0.1 similarity variable 1) for NP, = 1.0, fi = 0, = 0.5 
and t+, = 1.0. 

0, 
and 0, = 1.0. 

physical properties and the dependence of 
viscosity on temperature were taken from [14]. 

Temperature distributions 
The velocity profiles for the constant physical 

property case are well known and are therefore 
not considered here. Temperature profiles have 
been obtained for fifty-four cases for various 
values of parameters of interest. For the sake of 
brevity only some of these are shown in Figs. 3 
and 4 for a pressure gradient parameter /3 = 0, 
and cool and hot walls, respectively. Because of a 
programming error, some of the results reported 
in [9] for the case tJw = 0, = 0.2 are in error. 
When /? = 4, the results are similar in trend 
except that the temperature gradients are some- 
what steeper. The dimensionless temperature 
varies monotonically across the boundary 
layer from the wall value to the free-stream 
value. 

The physical nature of the results can be under- 
stood better when we note that the parameter N 
represents the relative role of energy transport 
by conduction to that of radiation. Three cases 
were considered: (i) N = 10, (ii) N = 1.0 and 
(iii) N = O-1. In the first case conduction 
predominates, in the second case energy trans- 
port by molecular conduction is of the same 
order of magnitude as radiation and in the last 
case radiation predominates. As N -+ ~3, the 
temperature profiles approach those for pure 
conduction. In all cases, the temperature profiles 
for values of N = 10 did not differ by more than 
about 2 per cent from those of pure conduction 
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FIG. 4(a). Temperature profiles as functions of the FIG. 4(b). Temperature profiles as functions of the 
similarity variable q for Nf, = 1.0, ,4 = 0, 8, = 1.0 similarity variable 7 for NP, .~ 1.0. ,B ~ 0, 0,, I.0 

and O0 =: 0. I. and O,, -= 0.5 

(N = m) and therefore the curves for N I= u3 
have not been included in the figures. 

The study of temperature profiles obtained 
brings out the following conclusions : 

T 

(1) The effect of radiation is to thicken the 
thermal boundary layer as if to lower the 
Prandtl number. 

(2) For a given value of N the departure of 
the temperature profile from that with 
N z-2 03 is greater with the hot wall than 
with the cold wall. 

Since Pyrex glass possesses no definite melting 
temperature, 2500°F was chosen as the boundary 
condition at the solid wall. The dimensionless 
stream function .L the velocity ratio .f’ and the 
shear function f” distributions for Pyrex glass 
are plotted in Fig. 5 as functions of 7. Because 
of the very strong temperature dependence of 
viscosity, the shear function is a maximum, 
not at the wall, but at some point away from it. 
The maximum shear occurs at different values 
of the similarity variable q for different K values. 
The shear stress at the wall was found to vary 
little with the absorption coefficient. The 
temperatures are plotted in Fig. 6 for four values 
of the absorption coefficient, and it is seen from 
Figs. 5 and 6 that the thermal-boundary-layer 
thickness is about five times smaller than the 
momentum-boundary-layer thickness. 

, 

3 3 4 

FIN;. 5. Dimensionless stream function, velocity ratio 
and shear function vs. similarity variable 7 for Pyrex 
glass, /3 = 0, 0 ,,. = 0.664, 0, = 1.0, K = IO” ft --I 

and T* = 4460”R. 

Heat transfer 
As an illustration, the variation of heat transfer 

across the boundary layer is plotted in Fig. 7 in 
terms of the temperature gradient for the 
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I I I 

0.25 0.5 0.75 I.0 

? 

FIG. 6. Temperature profiles as functions of simi- 
larity variable 7 for Pyrex glass, j3 = 0, 8, = 0.664, 

0,, = I.0 and T* = 4460”R. 

cii 

- 0.1 

FIG. 7. Temperature gradients across the boundary 
layer. 

pressure gradient parameter /I = 0 and both cool 
as well as hot walls. Note that for the case of the 
cool wall, the temperature gradient is maximum 
at the wall, while for the hot wall the temperature 
gradient is maximum at some point away from 
the wall. The value of the similarity variable 71 at 
which the gradient is maximum increases with 
the decrease of N. These trends are due to the 
very nonlinear dependence of the radiant energy 
flux on the temperature and can readily be ex- 
plained by considering the energy equation (21). 

The zone adjacent to the surface where 8’ is 
essentially constant for the case of large N and 
the cool wall decreases rapidly with the decrease 
in N. This is the zone where heat transfer is 
primarily by conduction, since the temperature 
level is still low and because of the nearly zero 
velocities in the neighborhood of the surface. 
For the case of the cool wall the local heat flux 
by conduction is maximum at the surface, but 
the radiant-energy flux by radiation, see equa- 
tion (9) which is a function not only of the 
temperature gradient but also of the temperature, 
is maximum at some point in the boundary 
layer. On the other hand, for the hot wall the 
local radiant-energy flux is maximum at the 
surface, but the local conductive-energy flux is 
maximum at a point away from the surface. 

The temperature gradients at the walls are 
shown plotted as functions of the temperature at 
the wall for the case of the cool wall in Figs. 8 
and 9 and as the functions of the free-stream 

FIG. 8. Temperature gradients at the wall as functions 
of temperature at the wall for fl = 0. 

temperature for the case of the hot wall in Fig. 
10. For a non-radiating medium (N = co) and 
the cool wall, the temperature gradients at the 
wall are less than 1 per cent smaller than for the 
case N = 10, and therefore separate curves were 
not drawn. For the purpose of comparison, the 
curve for the case N = co has been included in 
Fig. 10. As expected 6; is practically linear with 
BW or .9,, for N = 10 when energy transport by 
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7 
the coefficient was changed to 813 from 1613. 

‘I 

For non-black surface, the energy flux can be 
approximated by multiplying the second term 
on the right-hand side by the emissivity of the 

1 surface [2]. Since the distance y normal 
to the surface in the physical plane is related to 
the similarity variable 7 through equation (16), 
the total heat flux may be expressed as 

04 ._ -4 

i  

;- 

‘2T ,h The heat-transfer results calculated in this 

_~l_iL-L I manner for Npr = 1.0 are given in Table 1. 
c L_!_ 
L 0.2 04 06 0.8 I.0 

@w Table 1. Sotne heat-transfer results for flow along a wedge 

FIG. 9. Temperature gradients at the wall as functions 
of temperature at the wall for /3 = 3. 

in terms of the parameter $‘x/kT* (NRFJf _ 

0 .,. 

FIG. 10. Temperature gradients at the wall as 
functions of free stream temperature for fl = 0. 

conduction predominates. As the thermal radia- 
tion becomes the predominant mode of heat 
transfer, the temperature gradient at the wall 
departs more from linearity with decreasing N. 

The total heat flux is the sum of conductive 
and radiative energy fluxes. For strongly absorb- 
ing medium and black surfaces the heat flux at 
the wall can be expressed as 

I w 
- ‘T$ (24) 

It has been assumed that the Rosseland approxi- 
mation (9) is also valid at the wall except that 

-_“____. _ I_ _.__ 
0.3 0.5 0.7 

(a) Cool wall, /3 = 0 

(b) Cool wall, fl = + 

10 ’ -0401 -0.313 -0.224 -0.134 
1 -0.444 --0,356 -0~258 -0,154 
0.1 -0.694 -0.553 - 0.420 -0.264 

-_ __- __ .____~___ 

00 --___ 
(c) Hot wall, ,G = 0 

____ 
10 0.296 0,232 0,165 0.100 

1 0.286 0.231 0,173 0,102 
0.1 0.501 0.432 0,348 0.233 

~- _~ 

It is seen from the results that the effect of 
radiation is to increase the heat-transfer rate. 
As expected, the radiant heat transfer increases 
with the increase in BW. The results of Table l(c) 
show that there exists a minimum heat-transfer 
rate with N for low values of 0,. The physical 
reasons for this trend are not apparent. The 
results also show that for a hundredfold varia- 
tion in the parameter N the heat-transfer rate is 
increased only by about a factor of 2. 

To provide a broader perspective for the effects 
of radiation on boundary-layer heat transfer it 
is of interest to compare the findings of Goulard 
and Goulard [ 151, who studied the other limiting 
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case of heat transfer in a non-absorbing but 
emitting layer of gas, with those of this study. 
They found that heat transfer by convection to 
a cool wall (0, = O-572) is reduced if the gas 
layer radiates; however, the additional radiative 
energy flux increases the total heat flux to the 
surface. This is in agreement with the results of 
this study. The temperature gradients at the 
walls, see Figs. 8 and 9, for approximate values 
of BW > 0.5 are lower than for those of a non- 
radiating medium, and therefore the convective 
heat-transfer rate is lower when energy transport 
by thermal radiation is present. The total heat 
transfer rate as given in Table I(a) and (b) is 
higher, however, for a medium that radiates. 

By way of generalization, it should be pointed 
out that the results obtained in this paper for an 
absorbing and emitting medium are also valid 
when scattering is also present. In the presence 
of an absorbing, emitting and scattering medium, 
the Rosseland approximation is modified [7, 91 
by replacing the absorption coefficient K in the 
denominator of equation (9) by the extinction 
coefficient y, which is the sum of the absorption 
and scattering coefficients, and redefining the 
dimensionless parameter N as N = ky/4n2aT*9 

SUMMARY AND CONCLUSIONS 

The transfer of energy in a boundary-layer 
flow of an incompressible and radiating medium 
has been studied. Because the conservation-of- 
energy equation is so complex when radiant 
energy fluxes are included, the solution of the 
boundary-layer equations is very cumbersome; 
for this reason, the Rosseland approximation 
for the radiant-energy-flux vector has been 
employed to simplify the energy equation. The 
approximation fails in the vicinity of the surface 
since it does not properly take into account 
radiation leaving from the surface, and therefore 
the temperature profiles near the boundary are 
in error. 

The effect of radiation is to decrease 0:, below 
those of a non-radiating medium for the case 
of the cool wall and approximate values of 
BW > 0.5 and to increase them for approximate 
values of 19~ < 0.5. On the other hand, for the 
hot wall the temperature gradients at the wall 

are lower than those for N = co for all values of 
B,,. The total heat-transfer rate, however, is 
always increased when the medium absorbs and 
emits thermal radiation. 

The results reported in the paper are approxi- 
mate because of the simplifications made, and 
in the future, refinements will have to be made 
to the analysis by more exact or integral- 
equation formulation of thermal radiation. 
It is expected, however, that the results of the 
approximate analysis will retain the significant 
quantitative aspects of the actual behavior at 
conditions studied here. 
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R&urn&-Cet article ttudie les eflets du rayonnement thermique sur la distribution de tempkrature et 
les &changes thermiques dans la couche limite autour d’un ditdre lorsque le fluide est absorbant ou 
Cmissif. Le probltme gtntral de la couche limite est posB sous forme d’une bquation de transport pour 

le rayonnement thermique, d’une equation diff&entielle non IinCaire pour la conservation de I’tnergie 
et des Cquations habituelles pour la conservation de la masse et de la quantitt de mouvement. Comme 
il n’existe pas de solution g&n&ale pour ces tquations, on utilise I’approximation de Rosseland pour le 
flux de rayonnement afin de simplifier I’Bquation de I’Cnergie. Des solutions numCriques sont don&es 
pour la distribution de temperature et la transmission de chaleur. Les calculs ont CtC faits pour un fluide 

dont le nombre de Prandtl est tgal B l’unite aussi bien que pour du Pyrex fondu. 

Zusammenfassung-Das Grenzschichtproblem einer strahlungabsorbierenden und emittierenden 
Fliissigkeit beim Umstramen eines Keils wird unter Beriicksichtigung der Strahlungseinwirkung aut 
Temperaturverteilung und Wgrmetibergang behandelt. Das gewtihnliche Grenzschichtpro,tlem ist in 
Form einer iibergangsgleichung fiir thermische Strahlung formuliert, einer nicht liilezren Integro- 
differentialgleichung, die Energieerhaltung und die iiblichen Gleichungen der Erhaltung von Masse und 
lmpuls ausdriickt. Da keine allgemeine Liisung dieser Gleichungen iiblich ist, wurde zur Verein- 
fachung der Energiegleichung die Rosseland-NHherung fiir den Strahlungsw2rmeflussvektor herange- 
zogen. Numerische Liisungen fiir Temperaturverteilung und WZrmetitergang sind angegeben. Die 
Berechnungen erstrecken sich auf eine Fliissigkeit der Prandtl-Zdhl 1 und auf geschmolzenes Pyrexglas. 


