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BOUNDARY LAYER IN THERMAL RADIATION ABSORBING
AND EMITTING MEDIAt
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Abstract—A boundary-layer problem concerned with the effects of thermal radiation on the tempera-
ture distribution and the heat transfer in an absorbing and emitting media flowing over wedge is
considered. The general boundary-layer problem is formulated in terms of an equation of transfer for
thermal radiation, a nonlinear integrodifferential equation which represents conservation of energy,
and the usual equations for conservation of mass and momentum. Because no general solution for these
equations is possible, the Rosseland approximation for the radiant heat flux vector is used to simplfy
the energy equation. Numerical solutions for temperature distribution and heat transfer are given.
Calculations are presented for a fluid whose Prandtl number is 1, as well as for molten Pyrex glass.

NOMENCLATURE
velocity of light;
specific heat at constant pressure;
black-body emissive power,

Evy = nlpp = oT4,;
radiant energy flux vector defined by
equation (5);
incident radiation defined by equation
4);
dimensionless stream function defined by
equation (17);
enthalpy;
intensity of radiation or the amount of
radiant energy in a pencil of rays per
unit time, solid angle, and the area per-
pendicular to the ray;

Planck’s function of black-body radia-
tion;
thermal conductivity;
effective thermal conductivity defined by
equation (13);
exponent in equation (15);
Prandtl number;
dimensionless parameter,
N = «/4n?cT*3,;
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index of refraction;

pressure;

position vector;

position co-ordinate in the direction of
unit vector £;

absolute temperature;

time;

velocity outside the boundary layer;
radiant-energy density defined by equa-
tion (4);

velocity in the x-direction;

constant defined by equation (17);
velocity in the y-direction;

position co-ordinate;

pressure gradient parametered,

B = 2m|(m + 1);
extinction coeflicient or sum of absorp-
tion and scattering coefficients;
similarity variable defined by equation
(16);
dimensionless (normalized) temperature,

6 =T/T*,
absorption coefficient;
wavelength;
dynamic viscosity;
kinematic viscosity;
density;
Stefan-Boltzmann constant;
disspation function;
stream function defined by equation

(17);
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£, solid angle;
£, unit vector;
V, vector operator used for, say, the
gradient of a scalar.
Subscripts
0, free stream;
w, wall;

A, monochromatic (a given wavelength or
per unit wavelength).

Superscripts
* property evaluated at an arbitrary
temperature T*;
denotes differentiation with respect to the
similarity variable 7.

INTRODUCTION
Two-DIMENSIONAL laminar boundary layer-flow
and convective heat transfer have been studied
by many investigators; not much attention has
been given, however, to cases where thermal
radiation becomes an additional factor. Recent
developments in hypersonic flight, missile re-
entry, rocket combustion chambers, power
plants for interplanetary flight and gas-cooled
nuclear reactors have focused attention on ther-
mal radiation as a mode of energy transfer, and
emphasized the need for an improved under-
standing of radiative transfer in these processes.

Problems where convection and radiation are
coupled have been receiving more attention
[1-7). In these studies, simplifying assumptions
and approximations were introduced to obtain
the solution of the conservation equations or of
only the energy equation, and only Howe [4] and
Kadanoff [7] presented numerical results. In his
analysis, Howe assumed that the opaque gas
only absorbs, but does not emit any thermal
radiation. Kadanoff used the integrated (over-all
solid angles) form of the equation of transfer,
otherwise known as the Milne-Eddington
approximation. Ruminskii [5] employed a similar
equation to express the conservation of radiant
energy. The Milne-Eddington approximation,
known as the first-order diffusion approximation,
was developed to deal with the problems in
astrophysics and neutron transport [8].

These studies have shown that thermal
radiation affects heat transfer both directly and
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indirectly. Radiant energy can be directly
absorbed or emitted by a surface and thereby
alter its heat-transfer characteristics. Indirectly,
thermal radiation can be partially absorbed in
the boundary layer, altering the temperature
distribution, and thereby influencing the con-
ductive and convective heat-transfer charac-
teristics.

The purpose of this paper is to study the
effects of thermal radiation on the temperature
distribution and heat transfer during flow of an
absorbing and emitting medium along a wedge
so that a better understanding of combined
radiation and convection might be possible.
Since the complexity introduced by radiative
contribution to the energy flux is in part due to
the dependence of the flux on the geometrical
configuration of the problem, the simple
geometry of a wedge was chosen.

When energy transfer by radiation and
convection is present, the law of conservation of
energy becomes a complicated nonlinear integro-
differential equation. Thus, an exact analysis of
the interaction of a radiation field with ab-
sorbing and emitting media in the laminar
boundary layer is a very difficult problem. For
this reason, the Rosseland approximation,
which is valid for intense absorption, is used
below to approximate the radiant-energy flux
vector.

The strongly absorbing medium is of interest
as it provides a physically significant standard
of comparison for understanding the general
case, and the authors are of the opinion that the
simple problem must be solved first before the
more difficult problem can be attempted.

BASIC CONSERVATION EQUATIONS

The first step in the analysis of a combined
convection and radiation heat-transfer problem
is the application of conservation laws of mass,
momentum and energy. In nonrelativistic terms,
the presence of radiation does not affect the
equations of mass and momentum, since radia-
tion has no mass and the “‘radiative viscosity” is
very small at ordinary temperatures. The classical
forms of these equations are well known and
therefore are not considered here. Attention is
focused below on the equation of transfer, or the
equation of monochromatic radiant-energy con-
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servation, and on the equation of energy
including the terms due to thermal radiation.

Equation of transfer

Before the equation for conservation of
energy, which customarily accounts for con-
duction, convection and diffusion and usually
omits radiation as a mode of energy transfer,
can be derived, the equation of transfer of
thermal radiation in a radiating medium must
be considered.

The equation of transfer can be derived by
considering a small cylindrical element, Fig. 1,
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intensity will decrease on account of absorption
(scattering is neglected) and increase because of
contributions from the emission in the volume
element. Counting up the gains and losses of
radiant energy in the pencil of rays df2 during its
traversal of distance ds, one can show [9]

ol (r, 8, 1)

DS 4V X [RU(r 2, 0]

= K)L[ni[bbu\(rﬂ t) - I/\(r7 9’ t)]! (1)

where I;,,, is Planck’s function. The first and
second terms on the left-hand side of this
equation give the change in monochromatic

a5

FiG. 1. Co-ordinates for equation of transfer.

of cross-section d4 and length ds in an absorbing
and emitting medium in which temperature
varies from point to point in space and time.
Radiant energy in the wavelength interval
between A and A + dA and confined to a pencil
of rays of solid angle d about the direction of
the unit vector £ will cross the two faces normally
in a time interval d¢. As measured by the mono-
chromatic intensity of radiation, I,(r, &, ?), the

intensity with time and position, respectively.
The first and second terms on the right-hand
side denote emission and absorption of the
radiant energy.

The formal solution of equation (1) is readily
written down. By considering a pencil of rays
in the direction €2, the directional derivative
becomes V x (1)) = dI,/ds, and the steady-state
solution of equation (1) becomes
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I\(s) = I)(0) exp (— [} «, ds)
+ fs mixadop(8) exp (— [ ky d) ds', (2)

where 7,(0) is the monochromatic intensity of
radiation in the direction £ leaving the surface
at s = 0. It should be noted that equation (2)
does not in any real sense solve the equation of
transfer because the temperature distribution
(I35,,) must still be specified to determine the
intensity of radiation.

Integrating equation (1} over all solid angles
(£2 = 4n), there is obtained [9]

WD ¥ B

+ G [AmE a1, Y — £, 0], (3)

where the radiant-energy density u,(r,?) is
defined as

uy(r, 1) = E(r, )jc = 1jcfq_4, Hi{r, R, 1)d2 (4)

er

and the monochromatic radiant-energy transfer
per unit cross-sectional area perpendicular to a
unit vector 2 is defined as

ET, ) = o4, (T, &, N d0. (5)

Equation (3) describes the local rate of change
of monochromatic radiant energy density.

The equation for conservation of totalt
radiant energy is obtained, of course, by
integrating equation (3) over all wavelengths
from 0 to o, This introduces additional diffi-
culties because of the double integrals involved,
Considerable simplification is obtained, however,
for the case in which the monochromatic
absorption coefficient is independent of wave-
length or nearly so, in that «, can be replaced
by an appropriate mean absorption coefficient
k. The index of refraction is ordinarily quite
uniform over a range of wavelengths.

There is lack of agreement [8] on the most
appropriate definition for the mean absorption
coefficient. However, Planck’s definition

K == J'(c’o K/\Ibbyl dA/ng ]bbgl dA (6)

seems to be the most meaningful when energy
transport by conduction and convection are

1 For the total or grey quantities the subscript A is
omitted.
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present and therefore is used in this paper. Very
little data are available on the dependence of
the radiative properties on wavelength, tempera-
ture and pressure; they have been investigated
only in certain wavelength regions and only for
low pressures and temperatures. Since so little
information is available, numerical calculations
which follow will treat the absorption coefficient
as being independent of position and wavelength.

Energy equation

With energy transfer by conduction, con-
vection and radiation and work, the equation
for conservation of energy can be written as [9]

ou D# : Dp
P + T VX (VT —E) + Di +u® (7
The first term on the left-hand side and the term
V- E on the right-hand side represent the net
rate of gain of energy per unit of volume due to
thermal radiation. These two terms are ordinarily
neglected in standard woiks on convective heat
transfer.

Integrating equation (3) over all wavelengths
and substituting in equation (7), there is obtained

D/
p 5; =V - (kVT) — x(@n2Epp — &)
Dp
+ et ud. (@®)

Note that the term «(4n2Epy — &) appears with
opposite signs in equations (3) and (8), indicating
that a net gain of radiant energy occurs at the
expense of molecular energy. When radiation
terms are included in the energy equation the
temperature is a more natural dependent variable
than the enthalpy; hence the term containing
enthalpy will usually be rewritten.

Since the radiant-energy flux vector E and the
incident radiation ¢ are both functions of
temperature and the boundary conditions im-
posed on the intensity Xr, £, 1), equations (7)
and (8) are nonlinear integrodifferential equa-
tions. Unfortunately, in view of the exXisting
known mathematical techniques available for the
solution of integrodifferential equations, an
exact solution of even a simplified energy
equation does not seem possible.
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Rosseland approximation

The grey-medium assumption (x, = const.)
reduced the complexity of the radiant-energy
terms; however, the resulting energy equation is
still rather formidable and further simplification
is required. In the section below, an approxima-
tion for the radiant-flux vector is used; the
assumptions made in deriving it are discussed in
this section.

Rosseland [10] has shown that, for intense
absorption and a system close to thermo-
dynamic equilibrium, the radiant-energy-flux
vector can be approximated by

1 16n20T?
E(r, 1) = — 5 V(4T = — ";Z" VT. (9)

This relation also follows from the analog of
simple kinetic-theory arguments, Photons travel
with the velocity ¢. At any time, 1 of the photons
are moving in the x-direction and } in the
opposite direction. These photons execute a
random walk through the absorption centers.
If the definition of the Rosseland mean free path
is used, the radiant energy flux is given by
equation (9). Relation (9) can also be derived by
expanding the equation for radiant flux in Taylor
series [2, 11].

The Rosseland approximation leads to a
considerable simplification in the expression for
radiant flux. The integral representation is now
replaced by a simple diffusion-type equation.
The simplicity is, however, offset by its approxi-
mate nature and other disadvantages:

(1) The approximation is valid at points far
(optically) from the bounding surface and only
for intense absorption, i.e. when the fractional
variation in temperature is small in a distance of
one mean free path. The approximation breaks
down in the vicinity of the surface, since it does
not take into account radiation leaving from the
surface; the presence of the surface changes the
coefficient from 16/3 to 8/3.

(2) Equation (9) represents only the sum of
the first two terms in the Taylor series expansion
of the black-body emissive power Epp, and
therefore in some physical problems the error
in truncating the series could be appreciable.

In spite of these shortcomings the Rosseland
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approximation has been used with success in a
variety of problems ranging from transport of
radiation through gases at low density to the
study of the effects of radiation on blast waves
caused by nuclear explosions. An extensive

- bibliography regarding Rosseland’s approxima-

tion can be found in [9].

Boundary-layer equations

It is conceivable that under certain conditions
radiation would cause an extremely thick
thermal boundary layer. This raises the question
whether or not boundary-layer approximations
are valid when energy transport by radiation is
significant. In the following analysis it is assumed
that the boundary-layer-type energy equation is
valid.

The co-ordinate system for the wedge is shown
in Fig. 2. Making the usual Prandtl boundary

A

FiG. 2. Co-ordinate system for flow past a wedge.

layer assumptions [12] and utilizing the Rosse-
land approximation, the equations of conserva-
tion for steady state take the following form:

Conservation of mass:

P o
P (pu) + 7y (pv) = 0. (10)

Conservation of momentum:

ou ou  op 0 ouy @
Pt Py " tylty

(11)

4

et
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Conservation of energy:

T ol 7] oT
peptt 5+ pepv = by Kett e
ap - [ou\?
ik o 12
+uax+u(ay) » (12)
where
16n2ch 3

kett = k 4+ kr =k + — (13)
is the effective thermal conductivity. The term
16n%0T3/3x can be considered as the “radiative
conductivity”.

The boundary conditions for this system of
equations are assumed to be

u:b’:O, T:Tw
u="U, T=T,

at y=0
at y—>oo. (14)

Similarity transformation

“Similar” solutions are discussed in [12].
They constitute a particularly simple class of
solutions of u(x,y) and cause the system of
partial differential equations {10-12) to reduce
to two ordinary differential equations.

It is proved in [12] that such similar solutions
exist when the velocity of the potential flow is
proportional to a power series of the length
co-ordinate measured from the stagnation point,
ie. for

s

To obtain the similar solution, the dimension-
less co-ordinate 7, first suggested by Faulkner
and Skan [12], is introduced:

_ [on—%l) tf]{

U =ux™.

=V (16)
The asterisk designates a physical property
evaluated at an arbitrary temperature T*. The
continuity equation (10) can then be integrated
by introducing the stream function as

— m-+1
45.9) = [ gy x| S )
The velocities in the conservation equations can

be replaced through the definitions
o _p o P

5}—)=;;uanda=——;;v.
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Thus the velocity components become

proy  p*
=T s Uf (18)
and
p* O p*fm+1 . 1¢
”Z*wx:“‘p[ T }
<[+ (i) a0

In the case that p, p and kesr are functions of
temperature, the energy equation is nonlinear
in temperature and the most convenient defini-
tion of dimensionless temperature 8 is 8 = T/T*.
Tt is also possible to show that 8 can be expressed
as a function of n alone for the boundary
conditions in this problem.

Using the Bernoulli equation to evaluate the
pressure gradient and introducing the similarity
variable 7, the stream function ¢ and the
dimensionless temperature §, the conservation
equations (11) and (12) become

G
A2
A=) 0o

[(kert/K)0'] + Npif8 =0, 2n

where the prime denotes differentiation with
respect to n. In problems where energy transport
by thermal radiation is appreciable in com-
parison to energy transport by conduction and
convection, temperature levels will be high and
the work of the pressure forces and viscous heat
dissipation is unimportant and has therefore
been neglected. The ratio kens/k is expressed as

Kewtf/k = 1 -+ 463/3N. 22)

The dimensionless parameter N deteimines the
relative role of conduction versus radiation
term. It was discussed in a previous section that
in the immediate vicinity of the wall the co-
efficient in equation (9) changes from 16/3 to 8/3.
Therefore in the numerical calculations a

and
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constant of 2/3, instead of 4/3, was used in
equation (22) for values of % smaller than 4 per
cent ot the thermal-boundary-layer thickness.
The boundary conditions for this system of
differential equations are obtained from equa-

tions (14), (16) and (17) as
b
DISCUSSION OF RESULTS

f=f"=0, 0=04patn=0
f'=1, 8 =20 atn— 0.

Numerical integrations of equations (21) and
(22) are reported. for two distinct cases. In the
first calculation, the effect of the parameter N is
considered when the physical properties are
assumed to be independent of temperature.
Temperature distributions for a Prandtl number
of 1 were calculated for both hot and cool walls.
Since the energy equation is nonlinear and no
suitable dimensionless temperature was found
that would have eliminated the specification of
particular values of 6, and 8, in the boundary
conditions (23), solutions have been obtained
for several values of 64, and 6,.

In the second calculation, consideration was
given to Pyrex glass, for which the viscosity is a
very strong function of temperature. Both the
velocity and temperature profiles are therefore
affected by this dependence. Molten Pyrex glass
was chosen because of interest in re-entry
problem and because it is possible to change the
absorption coefficient of the glass by addition
of a carbonizing plastic {13]. The values of

R S
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FiG. 3(a). Temperature profiles as functions of the
similarity variable 5 for Np, = 10, 8 = 0, 8, = 0-1
and 6, = 1-0.
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physical properties and the dependence of
viscosity on temperature were taken from [14].

Temperature distributions

The velocity profiles for the constant physical
property case are well known and are therefore
not considered here. Temperature profiles have
been obtained for fifty-four cases for various
values of parameters of interest. For the sake of
brevity only some of these are shown in Figs. 3
and 4 for a pressure gradient parameter 8 = 0,
and cool and hot walls, respectively. Because of a
programming error, some of the results reported
in [9] for the case 6, = 6, = 0-2 are in error.
When 8 = %, the results are similar in trend
except that the temperature gradients are some-
what steeper. The dimensionless temperature
varies monotonically across the boundary
layer from the wall value to the free-stream
value.

The physical nature of the results can be under-
stood better when we note that the parameter N
represents the relative role of energy transport
by conduction to that of radiation. Three cases
were considered: (i) N = 10, (ii) N = 1-0 and
(iii) N = 0-1. In the first case conduction
predominates, in the second case energy trans-
port by molecular conduction is of the same
order of magnitude as radiation and in the last
case radiation predominates. As N — oo, the
temperature profiles approach those for pure
conduction. In ali cases, the temperature profiles
for values of N = 10 did not differ by more than
about 2 per cent from those of pure conduction

FiG. 3(b). Temperature profiles as functions of the
similarity variable 5 for Np, = 10,8 = 0,8, = 05
and 8, = 1-0.
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Fi1G. 4(a). Temperature profiles as functions of the
similarity variable n for Np, = 10, 8 = 0, 8, = 1-0
and 8, = O-1.

(N = ) and therefore the curves for N = o
have not been included in the figures.

The study of temperature profiles obtained
brings out the following conclusions:

(1) The effect of radiation is to thicken the
thermal boundary layer as if to lower the
Prandtl number.

(2) For a given value of N the departure of
the temperature profile from that with
N = oo is greater with the hot wall than
with the cold wall.

Since Pyrex glass possesses no definite melting
temperature, 2500°F was chosen as the boundary
condition at the solid wall. The dimensionless
stream function f, the velocity ratio f” and the
shear function " distributions for Pyrex glass
are plotted in Fig. 5 as functions of 5. Because
of the very strong temperature dependence of
viscosity, the shear function is a maximum,
not at the wall, but at some point away from it.
The maximum shear occurs at different values
of the similarity variable » for different « values.
The shear stress at the wall was found to vary
little with the absorption coefficient. The
temperatures are plotted in Fig. 6 for four values
of the absorption coefficient, and it is seen from
Figs. 5 and 6 that the thermal-boundary-layer
thickness is about five times smaller than the
momentum-boundary-layer thickness.

and R. J. GROSH

FiG. 4(b). Temperature profiles as functions of the
similarity variable 5 for Np, — 10,8 = 0,8, — 1-0
and 8, = O-5.

FiG. 5. Dimensionless stream function, velocity ratic
and shear function vs. similarity variable » for Pyrex

glass, 8 = 0, 8, = 0664, 6, = 1.0, « = 10 fi!

and T* = 4460°R.

Heat transfer

As an illustration, the variation of heat transfer
across the boundary layer is plotted in Fig. 7 in
terms of the temperature gradient for the
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06 l 1 |
0 025 05 075 -0
n
FiG. 6. Temperature profiles as functions of simi-
larity variable n for Pyrex glass, g = 0, 8, = 0-664,
8, = 1-0 and T* = 4460°R.

N w s R B A B

Fi1G. 7. Temperature gradients across the boundary
layer.

pressure gradient parameter 8 = 0 and both cool
as well as hot walls. Note that for the case of the
cool wall, the temperature gradient is maximum
at the wall, while for the hot wall the temperature
gradient is maximum at some point away from
the wall. The value of the similarity variable » at
which the gradient is maximum increases with
the decrease of N. These trends are due to the
very nonlinear dependence of the radiant energy
flux on the temperature and can readily be ex-
plained by considering the energy equation (21).

The zone adjacent to the surface where ¢’ is
essentially constant for the case of large N and
the cool wall decreases rapidly with the decrease
in N. This is the zone where heat transfer is
primarily by conduction, since the temperature
level is still low and because of the nearly zero
velocities in the neighborhood of the surface.
For the case of the cool wall the local heat flux
by conduction is maximum at the surface, but
the radiant-energy flux by radiation, see equa-
tion (9), which is a function not only of the
temperature gradient but also of the temperature,
is maximum at some point in the boundary
layer. On the other hand, for the hot wall the
local radiant-energy flux is maximum at the
surface, but the local conductive-energy flux is
maximum at a point away from the surface.

The temperature gradients at the walls are
shown plotted as functions of the temperature at
the wall for the case of the cool wall in Figs. 8
and 9 and as the functions of the free-stream

A

S D S

Fic. 8. Temperature gradients at the wall as functions
of temperature at the wall for 8 = 0.

temperature for the case of the hot wall in Fig.
10. For a non-radiating medium (N = o0) and
the cool wall, the temperature gradients at the
wall are less than 1 per cent smaller than for the
case N = 10, and therefore separate curves were
not drawn. For the purpose of comparison, the
curve for the case N = oo has been included in
Fig. 10. As expected 6, is practically linear with
6, or 8, for N = 10 when energy transport by
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"OP"—r‘—‘[*‘—r T T T

Fi1G. 9. Temperature gradients at the wall as functions
of temperature at the wall for § =

Fic. 10. Temperature gradients at the wall as
functions of free stream temperature for § = 0.

conduction predominates. As the thermal radia-
tion becomes the predominant mode of heat
transfer, the temperature gradient at the wall
departs more from linearity with decreasing N.

The total heat fiux is the sum of conductive
and radiative energy fluxes. For strongly absorb-
ing medium and black surfaces the heat flux at
the wall can be expressed as

aT 8n2 T3 ar

9" =q.+4q, =

It has been assumed that the Rosseland approxi-
mation (9) is also valid at the wall except that
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T

the coefficient was changed to 8/3 from 16/3.
For non-black surface, the energy flux can be
approximated by multiplying the second term
on the right-hand side by the emissivity of the
surface [2]. Since the distance y normal
to the surface in the physical plane is related to
the similarity variable » through equation (16),
the total heat flux may be expressed as
q'x

m-1 2 A )
R e L (s
The heat-transfer results calculated in this
manner for Np, = 1-0 are given in Table 1.

Table 1. Some heat-transfer results for flow along a wedge
in terms of the parameter q" x(kT* (N Rem)’z

9 w

N ol 03 05 07

(a) Cool wall, 8 = 0
7 0170

10 | —0303 —0237 0102

1| —0338 —0272 —0198 —0122
01/ -0361  —0435 0330 022
i (b) Cool wall, B = }
10| —o401 0313 o024 0134
1 ’ 0444 0356  —0258 0154
01| —0-694 0353  —0420  —0264
- i
(c) Hot wall, 8 =0
10 0-296 0232 0165 0-100
1 0286 0231 0173 0102
o1 0501 0-432 0-348 0233

It is seen from the results that the effect of
radiation is to increase the heat-transfer rate.
As expected, the radiant heat transfer increases
with the increase in 84,. The results of Table 1(c)
show that there exists a minimum heat-transfer
rate with N for low values of 8, The physical
reasons for this trend are not apparent. The
results also show that for a hundredfold varia-
tion in the parameter N the heat-transfer rate is
increased only by about a factor of 2.

To provide a broader perspective for the effects
of radiation on boundary-layer heat transfer it
is of interest to compare the findings of Goulard
and Goulard [15], who studied the other limiting
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case of heat transfer in a non-absorbing but
emitting layer of gas, with those of this study.
They found that heat transfer by convection to
a cool wall (8, = 0-572) is reduced if the gas
layer radiates; however, the additional radiative
energy flux increases the total heat flux to the
surface. This is in agreement with the results of
this study. The temperature gradients at the
walls, see Figs. 8 and 9, for approximate values
of 8, > 0-5 are lower than for those of a non-
radiating medium, and therefore the convective
heat-transfer rate is lower when energy transport
by thermal radiation is present. The total heat
transfer rate as given in Table 1(a) and (b) is
higher, however, for a medium that radiates.
By way of generalization, it should be pointed
out that the results obtained in this paper for an
absorbing and emitting medium are also valid
when scattering is also present. In the presence
of an absorbing, emitting and scattering medium,
the Rosseland approximation is modified [7, 9]
by replacing the absorption coefficient « in the
denominator of equation (9) by the extinction
coeflicient v, which is the sum of the absorption
and scattering coefficients, and redefining the
dimensionless parameter N as N = ky/4n?cT*3,

SUMMARY AND CONCLUSIONS

The transfer of energy in a boundary-layer
flow of an incompressible and radiating medium
has been studied. Because the conservation-of-
energy equation is so complex when radiant
energy fluxes are included, the solution of the
boundary-layer equations is very cumbersome;
for this reason, the Rosseland approximation
for the radiant-energy-flux vector has been
employed to simplify the energy equation. The
approximation fails in the vicinity of the surface
since it does not properly take into account
radiation leaving from the surface, and therefore
the temperature profiles near the boundary are
in error.

The effect of radiation is to decrease 6., below
those of a non-radiating medium for the case
of the cool wall and approximate values of
0, > 0-5 and to increase them for approximate
values of 8, <C 0-5. On the other hand, for the
hot wall the temperature gradients at the wall
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are lower than those for N = oo for all values of
6,. The total heat-transfer rate, however, is
always increased when the medium absorbs and
emits thermal radiation.

The results reported in the paper are approxi-
mate because of the simplifications made, and
in the future, refinements will have to be made
to the analysis by more exact or integral-
equation formulation of thermal radiation.
It is expected, however, that the results of the
approximate analysis will retain the significant
quantitative aspects of the actual behavior at
conditions studied here.
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Résumé—Cet article étudie les effets du rayonnement thermique sur la distribution de température et
les échanges thermiques dans la couche limite autour d’un diédre lorsque le fluide est absorbant ou
émissif. Le probléme général de la couche limite est posé sous forme d’une équation de transport pour
le rayonnement thermique, d’une équation différentielle non linéaire pour la conservation de I"énergie
et des équations habituelles pour la conservation de la masse et de la quantité de mouvement. Comme
il n’existe pas de solution générale pour ces équations, on utilise 'approximation de Rosseland pour le
flux de rayonnement afin de simplifier I’équation de 1’énergie. Des solutions numériques sont données
pour la distribution de température et la transmission de chaleur. Les calculs ont été faits pour un fluide
dont le nombre de Prandtl est égal a ['unité aussi bien que pour du Pyrex fondu.

Zusammenfassung—Das Grenzschichtproblem einer strahlungabsorbierenden und emittierenden
Fliissigkeit beim Umstromen eines Keils wird unter Beriicksichtigung der Strahlungseinwirkung aut
Temperaturverteilung und Wirmeiibergang behandelt. Das gewohnliche Grenzschichtproklem ist in
Form einer Ubergangsgleichung fiir thermische Strahiung formuliert, einer nicht linearen Integro-
differentialgleichung, die Energieerhaltung und die @iblichen Gleichungen der Erhaltung von Masse und
Impuls ausdriickt. Da keine allgemeine Losung dieser Gleichungen iiblich ist, wurde zur Verein-
fachung der Fnergiegleichung die Rosseland-Naherung fiir den Strahlungswirmeflussvektor herange-
zogen. Numerische Losungen fiir Temperaturverteilung und Warmeiitergang sind angegeben. Die
Berechnungen erstrecken sich auf eine Flussigkeit der Prandtl-Zahl I und auf geschmolzenes Pyrexglas.

Ansoranuma—PaceMaTpuBaeTca MPotIeMa MOrPAIMIHOre €05 JITA KIHHA B 13y a0l
H HOTIOMAINX CPeax MPH BIHAHII TeNIOBOIO HAJTY YUCHHSA HA PACTTPEIEIeHIE TEMITEPATY Dbl
1 Termonepetauy. O0masn nposieMa HOrPAHNYHOTO CI0A OMICHBACTCH AHPPePEHIHATLHDIN
YpaBHEHNAMU TIepeHoca, BRIOUAA HelnHelinoe uurerpounddepenunanbioe ypaniete 11
TepeHoca HHepPrHi TEZIOBOTO M3JIYUEHUSA | OLLH IPEJCTARIAKT 000 YPABHEINST COXPAHe I
DHEPTUMM, COXDAHEHMA MACCHl M KOMMYecTBA JBIUGKeHHA. TTOCROALRY 1EeBOBMOKIIO 0bulee
pelllenye [T OTHX YPABHEHHIT, TO HCITOMb3YETCA ANPORCHMAIUIL POCCIanId jUig BeRTOpa
AVUMCTOrG MOTOKA TENAd ¢ TeM, YTOOH yNpocTuTh ypasuenne suepriut. lpusogsren wie-
JCHHBIC peliellis IIA PACIIpesic.IeHHs TeMIepaTyPbl H BEIIMIIHBL TEII0MePeHOCH. Pacuer
HPHBEHCHBL A5 HILTROCTIL ¢ uueToM Pro= 1, a Taiske JUIA pacIimasaentoro crerta Hupese.



